

lml - Load me later. A lazy plugin management system.

	Author

	C.W.

	Source code

	http://github.com/lml/lml.git

	Issues

	http://github.com/lml/lml/issues

	License

	New BSD License

	Released

	0.1.0

	Generated

	Oct 21, 2020

Introduction

lml seamlessly finds the lml based plugins from your current python
environment but loads your plugins on demand. It is designed to support
plugins that have external dependencies, especially bulky and/or
memory hungry ones. lml provides the plugin management system only and the
plugin interface is on your shoulder.

lml enabled applications helps your customers 1 in two ways:

	Your customers could cherry-pick the plugins from pypi per python environment.
They could remove a plugin using pip uninstall command.

	Only the plugins used at runtime gets loaded into computer memory.

When you would use lml to refactor your existing code, it aims to flatten the
complexity and to shrink the size of your bulky python library by
distributing the similar functionalities across its plugins. However, you as
the developer need to do the code refactoring by yourself and lml would lend you a hand.

	1

	the end developers who uses your library and packages achieve their
objectives.

Quick start

The following code tries to get you started quickly with non-lazy loading.

from lml.plugin import PluginInfo, PluginManager

@PluginInfo("cuisine", tags=["Portable Battery"])
class Boost(object):
 def make(self, food=None, **keywords):
 print("I can cook %s for robots" % food)

class CuisineManager(PluginManager):
 def __init__(self):
 PluginManager.__init__(self, "cuisine")

 def get_a_plugin(self, food_name=None, **keywords):
 return PluginManager.get_a_plugin(self, key=food_name, **keywords)

if __name__ == '__main__':
 manager = CuisineManager()
 chef = manager.get_a_plugin("Portable Battery")
 chef.make()

At a glance, above code simply replaces the Factory pattern should you write
them without lml. What’s not obvious is, that once you got hands-on with it,
you can start work on how to do lazy loading.

Documentation

	Design idea
	Plugin discovery

	Plugin registration

	Plugin distribution

	Design principle

	References

	Tutorial
	Robot Chef all in one package without lml

	Robot Chef all in one package with lml

	Robot Chef distributed in multiple packages

	Robot Chef version 2: Use lml to write a shared library

	Additional references

	Logging facility
	Enable the logging

	API documentation
	lml.loader

	lml.plugin

Beyond the documentation above, here is a list of projects using lml:

	pyexcel [https://github.com/pyexcel/pyexcel]

	pyecharts [https://github.com/pyecharts/pyecharts]

	moban [https://github.com/moremoban/moban]

lml is available on these distributions:

	ARCH linux [https://aur.archlinux.org/packages/python-lml/]

	Conda forge [https://anaconda.org/conda-forge/lml]

	OpenSuse [https://build.opensuse.org/package/show/devel:languages:python/python-lml]

Design idea

The idea, to load the plugins later, originated from pyexcel project 1 which uses
loosely coupled plugins to extend the main package to read more file formats. During
its code growth, the code in pyexcel packages to manage the external and internal
plugins becomes a independent library, lml.

Lml is similar to Factories in
Zope Component Architecture 2. It provides functionalities to
discover, register and load lml based plugins. It cares how the meta data were
written but it does NOT care how the plugin interface is written.

Simply, lml promises to load your external dependency when they are used, but
only when you follow lazy-loading design principle below. Otherwise, lml does
immediate import and takes away the developer’s responsibility to manage plugin
registry and discovery.

In terms of extensibility of your proud package, lml keeps the door open even
if you use lml for immediate import. As a developer, you give the choice to other
contributor to write up a plugin for your package. As long as the user would have
installed community created extensions, lml will discover them and use them.

Plugin discovery

Prior to lml, three different ways of loading external plugins have been tried in pyexcel.
namespace package 3 comes from Python 3 or pkgutil style in Python 2 and 3.
It allows the developer to split a bigger packages into a smaller ones and
publish them separately. sphinxcontrib 4 uses a typical namespace package based
method. However, namespace package places a strict requirement
on the module’s __init__.py: nothing other than name space declaration should
be present. It means no module level functions can be place there. This restriction
forces the plugin to be driven by the main package but the plugin cannot use
the main package as its own library to do specific things. So namespace package
was ruled out.

The Flask extension management system was used early versions of pyexcel(=<0.21).
This system manipulates sys.path so that your plugin package appears in the namespace
of your main package. For example, there is a xls plugin called pyexcel-xls. To
import it, you can use “import pyexcel.ext.xls”. The shortcomings are:

	explicit statement “import pyexcel.ext.xls” becomes a useless statement in your code.
static code analyser(flake8/pep8/pycharm) would flag it up.

	you have to explicitly import it. Otherwise, your plugin is not imported.
PR 7 [https://github.com/pyexcel/pyexcel-io/pull/7] of pyexcel-io has extended
discussion on this topic.

	flask extension management system become deprecated by itself in Flask’s recent
development since 2016.

In order to overcome those shortcomings, implicit imports were coded into module’s
__init__.py. By iterating through currently installed modules in your python
environment, the relevant plugins are imported automatically.

lml uses implicit import. In order to manage the plugins, pip can be used to
install cherry-picked plugins or to remove unwanted plugins. In the situation
where two plugins perform the same thing but have to co-exist in your current
python path, you can nominate one plugin to be picked.

Plugin registration

In terms of plugin registrations, three different approaches have been tried.
Monkey-patching was easy to implement. When a plugin is imported, it loads
the plugin dictionary from the main package and add itself. But it is generally
perceived as a “bad” idea. Another way of doing it is to place the plugin code
in the main component and the plugin just need to declare a dictionary as the
plugin’s meta data. The main package register the meta data when it is imported.
tablib 5 uses such a approach. The third way is to use meta-classes.
M. Alchin (2008) 6 explained how meta class can be used to register plugin
classes in a simpler way.

lml uses meta data for plugin registration. Since lml load your plugin later,
the meta data is stored in the module’s __init__.py. For example, to load plugins
later in tablib, the ‘exports’ variable should be taken out from the actual
class file and replace the hard reference to the classes with class path string.

Plugin distribution

yapsy 7 and GEdit plugin management system 8 load plugins from file system.
To install a plugin in those systems, is to copy and paste the plugin code to a
designated directory. zope components, namespace packages and flask extensions
can be installed via pypi. lml support the latter approach. lml plugins can be
released to pypi and be installed by your end developers.

Design principle

To use lml, it asks you to avoid importing your “heavy” dependencies
in __init__.py. lml respects the independence of individual packages. You can
put modular level functions in your __init__.py as long as it does not trigger
immediate import of your dependency. This is to allow the individual plugin to
become useful as it is, rather to be integrated with your main package. For example,
pyexcel-xls can be an independent package to read and write xls data, without pyexcel.

With lml, as long as your third party developer respect the plugin name prefix,
they could publish their plugins as they do to any normal pypi packages. And the end
developer of yours would only need to do pip install.

References

	1

	https://github.com/pyexcel/pyexcel

	2

	http://zopecomponent.readthedocs.io/en/latest/

	3

	https://packaging.python.org/namespace_packages/

	4

	https://bitbucket.org/birkenfeld/sphinx-contrib/

	5

	https://github.com/kennethreitz/tablib

	6

	
	Alchin, 2008, A Simple Plugin Framework, http://martyalchin.com/2008/jan/10/simple-plugin-framework/

	7

	http://yapsy.sourceforge.net/

	8

	https://wiki.gnome.org/Apps/Gedit/PythonPluginHowToOld

Tutorial

In this tutorial, we are going to go through various ways to build
the command line application: Robot Chef. One is to build it as a single
package. Another is to build it using lml: one main component
with many plugins which are separately installable. By comparing the
different approaches to build Robot Chef, we could see how lml can be used
in practice.

Robot Chef would report what it knows about the food in the world. For
example:

$ robotchef "Portable Battery"
I can cook Portable Battery for robots

When you type “Fish and Chips”, it could reports it does not know:

$ robotchef "Fish and Chips"
I do not know how to cook Fish and Chips

For it to understand all the cuisines in the world, there are two ways to
enlarge its knowledge base: one is obviously to grow by itself. the other
is to open the api interface so that others could join your effort.

	Robot Chef all in one package without lml
	Demo

	Conventional plugin and plugin factory
	plugin.py

	main.py

	Robot Chef all in one package with lml
	Demo

	Lml plugins and plugin manager
	plugin.py

	main.py

	See also

	Robot Chef distributed in multiple packages
	Demo

	Decoupling the plugins with the main package

	Plugin management
	Built-in plugin

	Standalone plugin

	The end
	More standalone plugins

	How to ask robotchef to forget British cuisine?

	Robot Chef version 2: Use lml to write a shared library
	Demo

	Robot Chef v2 code

	Robot Chef API

	Built-in plugin and Standalone plugin

Additional references

	pyexcel-chart: use lml to refactor existing plugins [https://github.com/pyexcel/pyexcel-chart/commit/ca307f49b10f00cd080a3321490acc7b89ca0a41]

Robot Chef all in one package without lml

In this chapter, we are going to see how Robot Chef could be implemented
without lml. In later on chapters, we will bring in lml step by step.

Demo

Please checkout the robot chef example:

$ git clone https://github.com/python-lml/robotchef_allinone
$ cd robotchef_allinone
$ python setup.py install

And then you could try:

$ robotchef_allinone "Fish and Chips"
I can fry Fish and Chips

Conventional plugin and plugin factory

plugin.py

[image: _images/robot_chef.svg]Chef is the plugin interface that makes food. Boost, Bake and Fry are the
actual implementations. Boost are for “robots”. Bake and Fry are for human.

Note

The plugin interface is your responsibility. lml gives the freedom to you.

class Chef(object):
 def make(self, **params):
 print("I am a chef")

class Boost(Chef):
 def make(self, food=None, **keywords):
 print("I can cook %s for robots" % food)

class Fry(Chef):
 def make(self, food=None):
 print("I can fry " + food)

class Bake(Chef):
 def make(self, food=None):
 print("I can bake " + food)

PLUGINS = {
 "Portable Battery": Boost,
 "Fish and Chips": Fry,
 "Cornish Scone": Bake,
 "Jacket Potato": Bake,
}

Line 13, class Chef defines the plugin class interface. For robotchef, make is
defined to illustrate the functionality. Naturally you will be deciding the
interface for your plugins.

Some of you might suggest that class Chef is unnecessary because
Python uses duck-typing, meaning as long as the plugin has make method,
it should work. Yes, it would work but it is a short term solution.
Look at the long term, you could pass on additional functionalities
through class Chef without touching the plugins. What’s more, for
plugin developers, a clear defined interface is better than no class
at all. And I believe the functions of a real plugin are more than
just one here.

Next in the plugin.py file, PLUGINS is the dictionary that has food name as
key and Chef descendants as values. get_a_plugin method returns a Chef or
raises NoChefException.

def get_a_plugin(food_name=None, **keywords):
 plugin = PLUGINS.get(food_name)
 if plugin is None:
 raise NoChefException("Cannot find a chef")
 plugin_cls = plugin()
 return plugin_cls

main.py

Let us glimpse through the main code:

import sys

import robotchef_allinone.plugin as cuisine_manager

def main():
 if len(sys.argv) < 2:
 sys.exit(-1)

 food_name = sys.argv[1]
 try:
 knowledged_chef = cuisine_manager.get_a_plugin(food_name)
 knowledged_chef.make(food=food_name)
 except cuisine_manager.NoChefException:
 print("I do not know how to cook " + food_name)

The code takes the first command option as food name and feeds it to the
factory method get_a_plugin, which returns a Chef to “make” the food.
If no chef was found, it prints the default string: I do not know.

That is all about the all in one Robot Chef.

Robot Chef all in one package with lml

Now let us bring in lml and see see how the lml package can be used
to rewrite Robot Chef but in a single package. This chapter introduces
two classes: lml.plugin.PluginManager and lml.plugin.PluginInfo.
And show how those classes can be used to make factory pattern.
Meanwhile, it demonstrates that the lml based plugins can be made to load
immediately and in a single package. And this sections helps you to understand
the next section where we will make the plugins to be loaded later.

Demo

Please navigate to robotchef_allinone_lml and its packages. Do the following:

$ git clone https://github.com/python-lml/robotchef_allinone_lml
$ cd robotchef_allinone_lml
$ python setup.py install

And then you could try:

$ robotchef_allinone_lml "Fish and Chips"
I can fry Fish and Chips

Lml plugins and plugin manager

[image: _images/robotchef_allinone_lml.svg]
plugin.py

CuisineManager inherits from PluginManager class and
replaces the static registry PLUGINS and the modular function get_a_plugin.
Please note that CuisineManager declares that it is a manager for plugin_type named
cuisine.

class CuisineManager(PluginManager):
 def __init__(self):
 PluginManager.__init__(self, "cuisine")

 def get_a_plugin(self, food_name=None, **keywords):
 return PluginManager.get_a_plugin(self, key=food_name, **keywords)

 def raise_exception(self, key):
 raise NoChefException("Cannot find a chef")

Next, the PluginInfo decorates all Chef’s subclasses as
cuisine plugins and register the decorated classes with the manager class
for cuisine, CuisineManager. The food names become the tags which will
be used to look up the classes.

from lml.plugin import PluginInfo, PluginManager

class Chef(object):
 def make(self, **params):
 print("I am a chef")

@PluginInfo("cuisine", tags=["Portable Battery"])
class Boost(Chef):
 def make(self, food=None, **keywords):
 print("I can cook %s for robots" % food)

@PluginInfo("cuisine", tags=["Fish and Chips"])
class Fry(Chef):
 def make(self, food=None):
 print("I can fry " + food)

@PluginInfo("cuisine", tags=["Cornish Scone", "Jacket Potato"])
class Bake(Chef):
 def make(self, food=None):
 print("I can bake " + food)

Here is the code difference with Robot Chef All In One solution: plugin.py.

main.py

The main code has been updated to reflect the changes in plugin.py. CuisineManager
has to be instantiated to be the a factory manager.

--- /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef_allinone/robotchef_allinone/main.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef_allinone_lml/robotchef_allinone_lml/main.py
@@ -1,15 +1,17 @@
 import sys

-import robotchef_allinone.plugin as cuisine_manager
+from robotchef_allinone_lml.plugin import CuisineManager, NoChefException

 def main():
 if len(sys.argv) < 2:
 sys.exit(-1)

+ cuisine_manager = CuisineManager()
+
 food_name = sys.argv[1]
 try:
 knowledged_chef = cuisine_manager.get_a_plugin(food_name)
 knowledged_chef.make(food=food_name)
- except cuisine_manager.NoChefException:
+ except NoChefException:
 print("I do not know how to cook " + food_name)

Remember this interaction:

$ robotchef "Portable Battery"
I can cook Portable Battery for robots

The response comes from class Boost. It is obtained via CuisineManager when user types
‘Portable Battery’. And the food parameter was passed to the instance of Boost.
make method was called and it prints ‘I can cook Portable Battery for robots’.

See also

	pyexcel-chart: use lml to refactor existing plugins [https://github.com/pyexcel/pyexcel-chart/commit/ca307f49b10f00cd080a3321490acc7b89ca0a41]

Robot Chef distributed in multiple packages

In previous chapter, Robot Chef was written using lml but in a single
package and its plugins are loaded immediately. In this chapter, we will
decouple the plugin and the main package using lml. And we will
demonstrates the changes needed to plugin them back with the main package.

Demo

Do the following:

$ git clone https://github.com/python-lml/robotchef
$ cd robotchef
$ python setup.py install

The main command line interface module does simply this:

$ robotchef "Portable Battery"
I can cook Portable Battery for robots

Although it does not understand all the cuisines in the world as you see
as below:

$ robotchef "Jacket Potato"
I do not know how to cook Jacket Potato

it starts to understand it once you install Chinese cuisine package to complement
its knowledge:

$ git clone https://github.com/python-lml/robotchef_britishcuisine
$ cd robotchef_britishcuisine
$ python setup.py install

And then type in the following:

$ robotchef "Fish and Chips"
I can fry Fish and Chips

The more cuisine packages you install, the more dishes it understands. Here
is the loading sequence:

[image: _images/loading_sequence.svg]

Decoupling the plugins with the main package

[image: _images/robotchef_crd.svg]In order to demonstrate the capabilities of lml, Boost class is singled out and
placed into an internal module robotchef.robot_cuisine. Fry and Bake are
relocated to robotchef_britishcuisine package, which is separately installable.
built-in and standalone-plugin will explain how to glue them up.

After the separation, in order to piece all together, a special function
lml.loader.scan_plugins() needs to be called before the plugins are used.

--- /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef_allinone_lml/robotchef_allinone_lml/main.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef/robotchef/main.py
@@ -1,6 +1,16 @@
 import sys
+import logging
+import logging.config

-from robotchef_allinone_lml.plugin import CuisineManager, NoChefException
+from lml.loader import scan_plugins_regex
+from robotchef.plugin import CuisineManager, NoChefException
+
+logging.basicConfig(
+ format="%(name)s:%(lineno)d - %(levelname)s - %(message)s",
+ level=logging.DEBUG,
+)
+
+BUILTINS = ["robotchef.robot_cuisine"]

 def main():
@@ -8,6 +18,11 @@
 sys.exit(-1)

 cuisine_manager = CuisineManager()
+ scan_plugins_regex(
+ plugin_name_patterns="robotchef_",
+ pyinstaller_path="robotchef",
+ white_list=BUILTINS,
+)

 food_name = sys.argv[1]
 try:

What’s more, lml.loader.scan_plugins() search through all
installed python modules and register plugin modules that has prefix “robotchef_”.

The second parameter of scan_plugins is to inform pyinstaller about the
package path if your package is to be packaged up using pyinstaller.
white_list lists the built-ins packages.

Once scan_plugins is executed, all ‘cuisine’ plugins in your python path, including
the built-in ones will be discovered and will be collected by
PluginInfoChain in a dictionary for
get_a_plugin() to look up.

Plugin management

As you see in the class relationship diagram, There has not been any changes for
CuisineManager which inherits from :class:lml.PluginManager and manages
cuisine plugins. Please read the discussion in
previous chapter. Let us look at the plugins.

Built-in plugin

Boost plugin has been placed in a submodule, robotchef.robot_cuisine. Let
us see how it was done. The magic lies in robot_cuisine module’s __init__.py

from lml.plugin import PluginInfoChain

PluginInfoChain(__name__).add_a_plugin(
 "cuisine", "electrify.Boost", tags=["Portable Battery"]
)

A unnamed instance of lml.plugin.PluginInfoChain registers the meta
data internally with CuisineManager. __name__ variable
refers to the module name, and in this case it equals ‘robotchef.robot_cuisine’.
It is used to form the absolute import path for Boost class.

First parameter cuisine indicates that electrify.Boost is a cuisine plugin.
lml will associate it with CuisineManager. It is why CuisineMananger
has initialized as ‘cuisine’. The second parameter is used
the absolute import path ‘robotchef.robot_cuisine.electricity.Boost’. The third
parameter tags are the dictionary keys to look up class Boost.

Here is a warning: to achieve lazy loading as promised by lml, you shall avoid
heavy duty loading in __init__.py.
this design principle: not to import any un-necessary modules in your plugin
module’s __init__.py.

That’s all you need to write a built-in plugin.

Standalone plugin

Before we go to examine the source code of robotchef_britishcuisine,
please let me dictate that the standalone plugins shall respect the package
prefix, which is set by the main package. In this case, the plugin packages
shall start with ‘robotchef_’. Hence for British Cuisine, it is named as
‘robotchef_britishcuisine’.

Now let us have look at the module’s __init__.py, you would find similar the
plugin declaration code as in the following. But nothing else.

	1
2
3
4
5

	from lml.plugin import PluginInfoChain

PluginInfoChain(__name__).add_a_plugin(
 "cuisine", "fry.Fry", tags=["Fish and Chips"]
).add_a_plugin("cuisine", "bake.Bake", tags=["Cornish Scone", "Jacket Potato"])

Because we have relocated Fry and Bake in this package,
the instance of PluginInfoChain issues two chained call
add_a_plugin() but with corresponding
parameters.

Note

In your plugin package, you can add as many plugin class as you need. And
the tags can be as long as you deem necessary.

Let me wrap up this section. All you will need to do, in order to make a
standalone plugin, is to provide a package installer(setup.py and other related
package files) for a built-in plugin.

The end

That is all you need to make your main component to start using component based
approach to expand its functionalities. Here is the takeaway for you:

	lml.plugin.PluginManager is just another factory pattern that hides
the complexity away.

	You will need to call lml.loader.scan_plugins() in your __init__.py or
where appropriate before your factory class is called.

More standalone plugins

You are left to install robotchef_chinesecuisine and robotchef_cook yourself and
explore their functionalities.

How to ask robotchef to forget British cuisine?

The management of standalone plugins are left in the hands of the user. To prevent
robotchef from finding British cuisine, you can use pip to uninstall it, like this:

$ pip uninstall robotchef_britishcuisine

Robot Chef version 2: Use lml to write a shared library

In previous chapter, lml was used to split all in one Robot Chef into
one core package and several plugins module and packages. In this
chapter, we are going to go one step further to split the core package into
two so as to showcase how to use lml to write a shared api library.

[image: _images/robotchef_api_crd.svg]
Demo

Please checkout the following examples:

$ virtualenv --no-site-packages robotchefv2
$ source robotchefv2/bin/activate
$ git clone https://github.com/python-lml/robotchef_v2
$ cd robotchef_v2
$ python setup.py install
$ cd ..
$ git clone https://github.com/python-lml/robotchef_api
$ cd robotchef_api
$ python setup.py install

And then you can type in and test the second version of Robot Chef:

$ robotchef_v2 "Portable Battery"
I can cook Portable Battery for robots
$ robotchef_v2 "Jacket Potato"
I do not know how to cook Jacket Potato

In order to add “Jacket Potato” in the know-how, you would need to install
robotchef_britishcuisine in this folder:

$ git clone https://github.com/python-lml/robotchef_britishcuisine_v2
$ cd robotchef_britishcuisine_v2
$ python setup.py install
$ robotchef_v2 "Jacket Potato"
I can bake Jacket Potato

Robot Chef v2 code

Let us look at main code robotchef_v2:

--- /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef/robotchef/main.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/v2/robotchef_v2/robotchef_v2/main.py
@@ -1,28 +1,11 @@
 import sys
-import logging
-import logging.config

-from lml.loader import scan_plugins_regex
-from robotchef.plugin import CuisineManager, NoChefException
-
-logging.basicConfig(
- format="%(name)s:%(lineno)d - %(levelname)s - %(message)s",
- level=logging.DEBUG,
-)
-
-BUILTINS = ["robotchef.robot_cuisine"]
+from robotchef_api import NoChefException, cuisine_manager

 def main():
 if len(sys.argv) < 2:
 sys.exit(-1)
-
- cuisine_manager = CuisineManager()
- scan_plugins_regex(
- plugin_name_patterns="robotchef_",
- pyinstaller_path="robotchef",
- white_list=BUILTINS,
-)

 food_name = sys.argv[1]
 try:

The code highlighted in red are removed from main.py and are placed into
robotchef_api package. And robotchef_v2 becomes the consumer of
the robotchef api.

And plugin.py and robot_cuisine has been moved to robotchef_api package.

Robot Chef API

Now let us look at robotchef_api. In the following directory listing, the
plugin.py And robot_cuisine is exactly the same as the plugin.py
and robot_cuisine in robotchef:

__init__.py plugin.py robot_cuisine

Notably, the plugin loader is put in the __init__.py:

from lml.loader import scan_plugins_regex
from robotchef_api.plugin import CuisineManager, NoChefException # noqa: F401

BUILTINS = ["robotchef_api.robot_cuisine"]

scan_plugins_regex(
 plugin_name_patterns="^robotchef_.*$",
 pyinstaller_path=__path__, # noqa: F821
 white_list=BUILTINS,
)
cuisine_manager = CuisineManager()

scan_plugins_regex here loads all modules that start with “robotchef_” and as well as
the module robotchef_api.robot_cuisine in the white_list.

This is how you will write the main component as a library.

Built-in plugin and Standalone plugin

You may have noticed that a copy of robotchef_britishcuisine is placed in v2 directory.
Why not using the same one above v2 directory? although they are almost identical,
there is a minor difference. robotchef_britishcuisine in v2 directory depends on
robotchef_api but the other British cuisine package depends on robotchef. Hence, if you
look at the fry.py in v2 directory, you will notice a slight difference:

--- /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef_britishcuisine/robotchef_britishcuisine/fry.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/v2/robotchef_britishcuisine/robotchef_britishcuisine/fry.py
@@ -1,4 +1,4 @@
-from robotchef.plugin import Chef
+from robotchef_api.plugin import Chef

 class Fry(Chef):

Logging facility

During the development of lml package, the logging facility helps debugging a lot. Let
me show you how to enable the logs of lml.

Enable the logging

Let us open robotchef’s main.py [https://github.com/python-lml/robotchef/blob/master/robotchef/main.py]. Insert the highlighted codes.

import sys

from robotchef.plugin import CuisineManager, NoChefException

import logging
import logging.config

logging.basicConfig(
 format='%(name)s:%(lineno)d - %(levelname)s - %(message)s',
 level=logging.DEBUG)

def main():
 if len(sys.argv) < 2:
 sys.exit(-1)

 manager = CuisineManager()
...

Then you will need to run the installation again:

$ cd robotchef
$ python setup.py install

Let us run the command again:

$ robotchef "Jacket Potato"
lml.plugin:226 - DEBUG - declare 'cuisine' plugin manager
lml.loader:52 - DEBUG - scanning for plugins...
lml.utils:48 - DEBUG - found robotchef_allinone_lml
lml.plugin.PluginInfoChain:139 - DEBUG - add robotchef_britishcuisine.fry.Fry as 'cuisine' plugin
robotchef.plugin.CuisineManager:178 - DEBUG - load robotchef_britishcuisine.fry.Fry later
lml.plugin.PluginInfoChain:139 - DEBUG - add robotchef_britishcuisine.bake.Bake as 'cuisine' plugin
robotchef.plugin.CuisineManager:178 - DEBUG - load robotchef_britishcuisine.bake.Bake later
lml.utils:48 - DEBUG - found robotchef_britishcuisine
lml.plugin.PluginInfoChain:139 - DEBUG - add robotchef.robot_cuisine.electrify.Boost as 'cuisine' plugin
robotchef.plugin.CuisineManager:178 - DEBUG - load robotchef.robot_cuisine.electrify.Boost later
lml.utils:48 - DEBUG - found robotchef.robot_cuisine
lml.loader:82 - DEBUG - scanning done
robotchef.plugin.CuisineManager:160 - DEBUG - get a plugin called
robotchef.plugin.CuisineManager:210 - DEBUG - import robotchef_britishcuisine.bake.Bake
robotchef.plugin.CuisineManager:202 - DEBUG - load <class 'robotchef_britishcuisine.bake.Bake'> now for 'Jacket Potato'
I can bake Jacket Potato

Reading the log with the loading sequence,

[image: _images/loading_sequence.svg]Three Chef plugins were discovered: robotchef_britishcuisine.fry.Fry,
robotchef_britishcuisine.bake.Bake and robotchef.robot_cuisine.electricity.Boost.
However, they are not imported yet. When the robotchef try to look up a plugin,
it logs “get a plugin called”. And it is actual time when a plugin is imported.

API documentation

lml.loader

Plugin discovery module. It supports plugins installed via pip tools
and pyinstaller. scan_plugins() is expected to be
called in the main package of yours at an earliest time of convenience.

	copyright

	
	2017-2020 by Onni Software Ltd.

	license

	New BSD License, see LICENSE for more details

	
lml.loader.scan_plugins_regex(plugin_name_patterns=None, pyinstaller_path=None, black_list=None, white_list=None)

	Implicitly discover plugins via pkgutil and pyinstaller path using
regular expression

	plugin_name_patterns: python regular expression

	it is used to match all your plugins, either it is a prefix,
a suffix, some text in the middle or all.

	pyinstaller_path:string

	used in pyinstaller only. When your end developer would package
your main library and its plugins using pyinstaller, this path
helps pyinstaller to find the plugins.

	black_list:list

	a list of module names that should be skipped.

	white_list:list

	a list of modules that comes with your main module. If you have a
built-in module, the module name should be inserted into the list.

For example, robot_cuisine is a built-in module inside robotchef. It
is listed in white_list.

lml.plugin

lml divides the plugins into two category: load-me-later plugins and
load-me-now ones. load-me-later plugins refer to the plugins were
loaded when needed due its bulky and/or memory hungry dependencies.
Those plugins has to use lml and respect lml’s design principle.

load-me-now plugins refer to the plugins are immediately imported. All
conventional Python classes are by default immediately imported.

PluginManager should be inherited to form new
plugin manager class. If you have more than one plugins in your
architecture, it is advisable to have one class per plugin type.

PluginInfoChain helps the plugin module to
declare the available plugins in the module.

PluginInfo can be subclassed to describe
your plugin. Its method tags()
can be overridden to help its matching PluginManager
to look itself up.

	copyright

	
	2017-2020 by Onni Software Ltd.

	license

	New BSD License, see LICENSE for more details

	
class lml.plugin.PluginInfo(plugin_type, abs_class_path=None, tags=None, **keywords)

	Information about the plugin.

It is used together with PluginInfoChain to describe the plugins.
Meanwhile, it is a class decorator and can be used to register a plugin
immediately for use, in other words, the PluginInfo decorated plugin
class is not loaded later.

	name:

	plugin name

	absolute_import_path:

	absolute import path from your plugin name space for your plugin class

	tags:

	a list of keywords help the plugin manager to retrieve your plugin

	keywords:

	Another custom properties.

For load-me-later plugins:

>>> info = PluginInfo("sample",
... abs_class_path='lml.plugin.PluginInfo', # demonstration only.
... tags=['load-me-later'],
... custom_property = 'I am a custom property')
>>> print(info.module_name)
lml
>>> print(info.custom_property)
I am a custom property

For load-me-now plugins:

>>> @PluginInfo("sample", tags=['load-me-now'])
... class TestPlugin:
... def echo(self, words):
... print("echoing %s" % words)

Now let’s retrive the second plugin back:

>>> class SamplePluginManager(PluginManager):
... def __init__(self):
... PluginManager.__init__(self, "sample")
>>> sample_manager = SamplePluginManager()
>>> test_plugin=sample_manager.get_a_plugin("load-me-now")
>>> test_plugin.echo("hey..")
echoing hey..

	
class lml.plugin.PluginInfoChain(path)

	Pandas style, chained list declaration

It is used in the plugin packages to list all plugin classes

	
class lml.plugin.PluginManager(plugin_type)

	Load plugin info into in-memory dictionary for later import

	plugin_type:

	the plugin type. All plugins of this plugin type will be
registered to it.

	
dynamic_load_library(a_plugin_info)

	Dynamically load the plugin info if not loaded

	a_plugin_info:

	a instance of plugin info

	
get_a_plugin(key, **keywords)

	Get a plugin

	key:

	the key to find the plugins

	keywords:

	additional parameters for help the retrieval of the plugins

	
load_me_later(plugin_info)

	Register a plugin info for later loading

	plugin_info:

	a instance of plugin info

	
load_me_now(key, library=None, **keywords)

	Import a plugin from plugin registry

	key:

	the key to find the plugin

	library:

	to use a specific plugin module

	
raise_exception(key)

	Raise plugin not found exception

Override this method to raise custom exception

	key:

	the key to find the plugin

	
register_a_plugin(plugin_cls, plugin_info)

	for dynamically loaded plugin during runtime

	plugin_cls:

	the actual plugin class refered to by the second parameter

	plugin_info:

	a instance of plugin info

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lml	

 	
 	
 lml.loader	

 	
 	
 lml.plugin	

Index

 D
 | G
 | L
 | P
 | R
 | S

D

 	
 	dynamic_load_library() (lml.plugin.PluginManager method)

G

 	
 	get_a_plugin() (lml.plugin.PluginManager method)

L

 	
 	lml.loader (module)

 	lml.plugin (module)

 	
 	load_me_later() (lml.plugin.PluginManager method)

 	load_me_now() (lml.plugin.PluginManager method)

P

 	
 	PluginInfo (class in lml.plugin)

 	
 	PluginInfoChain (class in lml.plugin)

 	PluginManager (class in lml.plugin)

R

 	
 	raise_exception() (lml.plugin.PluginManager method)

 	
 	register_a_plugin() (lml.plugin.PluginManager method)

S

 	
 	scan_plugins_regex() (in module lml.loader)

Appendix

Robot Chef plugin.py

from lml.plugin import PluginManager

class NoChefException(Exception):
 pass

class CuisineManager(PluginManager):
 def __init__(self):
 PluginManager.__init__(self, "cuisine")

 def get_a_plugin(self, food_name=None, **keywords):
 return PluginManager.get_a_plugin(self, key=food_name, **keywords)

 def raise_exception(self, key):
 raise NoChefException("Cannot find a chef")

class Chef(object):
 def make(self, **params):
 print("I am a chef")

Robot Chef Version 3

code difference with Robot Chef All In One solution: plugin.py

--- /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef_allinone/robotchef_allinone/plugin.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/lml/checkouts/stable/examples/robotchef_allinone_lml/robotchef_allinone_lml/plugin.py
@@ -1,5 +1,19 @@
+from lml.plugin import PluginInfo, PluginManager
+
+
 class NoChefException(Exception):
 pass
+
+
+class CuisineManager(PluginManager):
+ def __init__(self):
+ PluginManager.__init__(self, "cuisine")
+
+ def get_a_plugin(self, food_name=None, **keywords):
+ return PluginManager.get_a_plugin(self, key=food_name, **keywords)
+
+ def raise_exception(self, key):
+ raise NoChefException("Cannot find a chef")

 class Chef(object):
@@ -7,32 +21,19 @@
 print("I am a chef")

+@PluginInfo("cuisine", tags=["Portable Battery"])
 class Boost(Chef):
 def make(self, food=None, **keywords):
 print("I can cook %s for robots" % food)

+@PluginInfo("cuisine", tags=["Fish and Chips"])
 class Fry(Chef):
 def make(self, food=None):
 print("I can fry " + food)

+@PluginInfo("cuisine", tags=["Cornish Scone", "Jacket Potato"])
 class Bake(Chef):
 def make(self, food=None):
 print("I can bake " + food)
-
-
-PLUGINS = {
- "Portable Battery": Boost,
- "Fish and Chips": Fry,
- "Cornish Scone": Bake,
- "Jacket Potato": Bake,
-}
-
-
-def get_a_plugin(food_name=None, **keywords):
- plugin = PLUGINS.get(food_name)
- if plugin is None:
- raise NoChefException("Cannot find a chef")
- plugin_cls = plugin()
- return plugin_cls

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 lml - Load me later. A lazy plugin management system.

 		
 Design idea

 		
 Plugin discovery

 		
 Plugin registration

 		
 Plugin distribution

 		
 Design principle

 		
 References

 		
 Tutorial

 		
 Robot Chef all in one package without lml

 		
 Demo

 		
 Conventional plugin and plugin factory

 		
 Robot Chef all in one package with lml

 		
 Demo

 		
 Lml plugins and plugin manager

 		
 See also

 		
 Robot Chef distributed in multiple packages

 		
 Demo

 		
 Decoupling the plugins with the main package

 		
 Plugin management

 		
 The end

 		
 Robot Chef version 2: Use lml to write a shared library

 		
 Demo

 		
 Robot Chef v2 code

 		
 Robot Chef API

 		
 Built-in plugin and Standalone plugin

 		
 Additional references

 		
 Logging facility

 		
 Enable the logging

 		
 API documentation

 		
 lml.loader

 		
 lml.plugin

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

